🔥 Gate 广场活动|#发帖赢Launchpad新币KDK 🔥
KDK|Gate Launchpad 最新一期明星代币
以前想参与? 先质押 USDT
这次不一样 👉 发帖就有机会直接拿 KDK!
🎁 Gate 广场专属福利:总奖励 2,000 KDK 等你瓜分
🚀 Launchpad 明星项目,走势潜力,值得期待 👀
📅 活动时间
2025/12/19 12:00 – 12/30 24:00(UTC+8)
📌 怎么参与?
在 Gate 广场发帖(文字、图文、分析、观点都行)
内容和 KDK上线价格预测/KDK 项目看法/Gate Launchpad 机制理解相关
帖子加上任一话题:#发帖赢Launchpad新币KDK 或 #PostToWinLaunchpadKDK
🏆 奖励设置(共 2,000 KDK)
🥇 第 1 名:400 KDK
🥈 前 5 名:200 KDK / 人(共 1,000 KDK)
🥉 前 15 名:40 KDK / 人(共 600 KDK)
📄 注意事项
内容需原创,拒绝抄袭、洗稿、灌水
获奖者需完成 Gate 广场身份认证
奖励发放时间以官方公告为准
Gate 保留本次活动的最终解释权
GPT 成熟之路官方笔记 | OpenAI 开发者日
文章来源:量子位
ChatGPT产品打造的细节,现在OpenAI自己交了个底。
……
除了奥特曼惊艳全球的开幕演讲,当天还有更多分组讨论,视频也陆续被官方上传到了油管。
而这也算得上是OpenAI惊天抓马之前,其团队“内幕”的一次展示。
值得借鉴学习之处,我们已经整理好笔记,一起来看~
产品与研究团队合作“前所未有”
把时间拉回到2022年10月,OpenAI的研究团队和产品团队开始围绕一个idea进行讨论:为他们的基础大模型,制作一个对话界面。
彼时还处在ChatGPT的早期阶段,但研究团队和产品团队的紧密协作已然开始,它们之间相互的影响程度更是独树一帜。
或许这种团队合作模式,可以成为其他公司参考借鉴的样本。
用OpenAI模型行为产品负责人Joanne Jang的话说:
ChatGPT本身,就是最明显的例子。
Barret团队的主要职责,是在模型能力被加入到ChatGPT和API之前,对其进行调整。具体来说,ChatGPT后期增加的联网、分析文件等功能,都是由Post-Training团队负责的。
Barret重点提到的是,正是产品团队的种种设计,让研究团队能够及时get到什么样的模型响应,对于现实世界中的用户和开发人员是真正有用的。
比如ChatGPT的点赞点踩按钮,就给研究本身带来了很多价值:
首先,在OpenAI做产品的目标不是收入、参与度、增长等传统产品指标,而是打造造福全人类的通用人工智能。
其次,OpenAI的产品经理往往是从技术而非用户问题的角度出发,去设计产品功能的。
最后,OpenAI研究团队和产品团队相互影响的程度非常之高,在业内可以说达到了前所未有的程度。
而具体教导(设计)模型行为的工作,就是靠产品团队来参与完成的:比如说,当用户告诉ChatGPT“你现在是一只猫”,ChatGPT应该表现出怎样的默认行为?
产品团队对此进行了大量的实验,以找出适合大多数用户的默认模式。
(p.s. 不过Joanne也提到,对于用户而言,最好的模型是个性化的模型,这也是他们对未来大模型发展方向的预判之一。)
非线性策略优化大模型性能
讲完协同“内幕”,再来看技术细节。
在开发者日上,OpenAI的技术人员分享了GPT-4中使用的大模型优化技术。
划重点就是,采用非线性策略,具体包括两个维度和四个象限。
OpenAI提出了一个多层次的非线性优化框架,涉及到了提示工程、搜索增强生成(RAG)和微调这三种技术。
传统的模型优化方式往往以线性方式运用这三项技术,在OpenAI看来这种模式无法解决“真正需要解决的问题”。
根据这两个维度需求程度的不同,就形成了四个象限。
具体来说,这两个优化方向的起点都是提示工程,但接下来要用RAG还是微调(或两者兼用)则需要根据实际情况来选择。
首先是提示工程,它被看作大模型优化的起始点,通过设计提示词来增强模型性能,可以测试和快速迭代。
具体的策略包括,将提示词设计得更清晰、将复杂任务拆解,以及提供示例文本或调用外部工具等。
此外,任务的细化也会带来token的增加,所以提示工程对于减少token消耗来说也是不利的。
但是这种知识信息通常局限于十分具体的领域,但对于宽泛的领域(如“法律”“医学”等)作用并不明显。
同时,提供大量上下文信息会带来比提示工程更多的token消耗,对节约token同样不利。
但事后分析发现,这并非是模型的幻觉现象,而是用户提供的信息本身就存在错误。
相比RAG,微调更侧重于强调模型已有的知识,并提供复杂的任务指导,对于学习新知识或迭代到新用例则不是好的选择。
这也是OpenAI调教GPT-4的法宝,具体到应用层面,OpenAI也为一众创业者献上了一份大礼。
为创业者送上“大礼包”
OpenAI工程负责人和Applied团队成员分享了如何将基于OpenAI模型搭建的应用从原型走向完整产品。
如果你也有兴趣基于OpenAI的API搞一些应用创新,以下是官方分享的一些工程实践经验:
第一,打造以人为本的用户体验,即减少模型不确定性,增强模型的安全性和可控性。
第二,提供一致性体验。比如利用知识库等工具来减少模型的不一致性。工程师们提到,OpenAI通过控制seed来控制结果的可重现性,并且提供了当前系统的“指纹”来代表整个系统的状态。
第三,重视性能评估。并且OpenAI发现,用大模型来代替人工进行性能评估效果显著。
第四,管理延迟和成本。主要策略有两种:首先是加入语义缓存,来减少真实API的访问;其次是使用更便宜的模型,比如不直接使用GPT-4,而是用GPT-4的输出来微调GPT-3.5 Turbo。
新版API支持调用代码解释器和外部知识,OpenAI的API工程主管Michelle进行了现场演示。
One More Thing
顺便提一嘴,开发者大会的开幕式上,OpenAI现场给每个人发放了500美元的账户余额,让线下观众纷纷投来羡慕的目光。
按照最新的定价,50美元可以通过API处理500万输入token或166.6万输出token。