🔥 Gate 广场活动|#发帖赢Launchpad新币KDK 🔥
KDK|Gate Launchpad 最新一期明星代币
以前想参与? 先质押 USDT
这次不一样 👉 发帖就有机会直接拿 KDK!
🎁 Gate 广场专属福利:总奖励 2,000 KDK 等你瓜分
🚀 Launchpad 明星项目,走势潜力,值得期待 👀
📅 活动时间
2025/12/19 12:00 – 12/30 24:00(UTC+8)
📌 怎么参与?
在 Gate 广场发帖(文字、图文、分析、观点都行)
内容和 KDK上线价格预测/KDK 项目看法/Gate Launchpad 机制理解相关
帖子加上任一话题:#发帖赢Launchpad新币KDK 或 #PostToWinLaunchpadKDK
🏆 奖励设置(共 2,000 KDK)
🥇 第 1 名:400 KDK
🥈 前 5 名:200 KDK / 人(共 1,000 KDK)
🥉 前 15 名:40 KDK / 人(共 600 KDK)
📄 注意事项
内容需原创,拒绝抄袭、洗稿、灌水
获奖者需完成 Gate 广场身份认证
奖励发放时间以官方公告为准
Gate 保留本次活动的最终解释权
谷歌大模型研究陷重大争议:训练数据之外完全无法泛化?网友:AGI奇点推迟了
原文来源:量子位
针对Transformer,谷歌DeepMind一项新的发现引起了不小争议:
它的泛化能力,无法扩展到训练数据以外的内容。
一系列大模型表现出强大的上下文学习能力,可以快速学习示例并完成新的任务。
但现在,同样来自Google的研究人员似乎指出了它的致命缺陷——超出训练数据也就是人类已有知识之外,全都无能为力。
一时间,不少从业者认为AGI再次变得遥不可及。
新函数几乎无法预测
实验中,作者在基于Jax的机器学习框架上训练了规模接近GPT-2、只包含解码器的Transformer。
其中包括了12层,8个注意力头,嵌入空间维度为256,参数量约为950万。
为了测试它的泛化能力,作者使用了函数作为测试对象——将线性函数和正弦函数一起作为训练数据喂模型。
这两种函数对于此时的模型来说是已知,预测的结果自然也很好,但当研究者把线性函数和正弦函数进行了凸性组合时,问题就出现了。
凸性组合并没有那么神秘,作者构建出了形如f(x)=a·kx+(1-a)sin(x)的函数,在我们看来不过是两个函数按比例简单相加。
但我们之所以会这么认为,正是因为我们的大脑拥有这方面的泛化能力,而大模型就不一样了。
别看就是简单相加,对于只见过线性和正弦函数的模型来说,这就是一种全新的函数。
对于这种新函数,Transformer给出的预测可以说是毫无准确性可言(图4c)——于是作者就认为模型在函数上没有泛化能力。
只有一点例外——当其中一项的权重接近1时,模型的预测结果和实际就比较吻合了。
但权重为1意味着,陌生的新函数直接变成了训练时见过的函数,这样的数据对于泛化能力来说显然没有什么意义。
研究人员发现,哪怕是单纯的正弦函数,只是改变其中的频率,模型的预测结果也会发生线束变化。
只有当频率接近训练数据中的函数时,模型才能给出比较准确的预测,当频率过高或过低时,预测结果出现了严重的偏差……
作者在文中也自述了研究中存在的一些局限性,如何将函数数据上的观察应用到token化的自然语言问题上。
团队也在语言模型上尝试了相似的试验但遇到一些障碍,如何适当定义任务族(相当于这里的函数种类)、凸组合等还有待解决。
而Samuel这边的模型规模更小,仅有4层,在Colab上训练5分钟后就可以泛化到线性与正弦函数的组合。
不能泛化又如何
综合全文来看,Quora CEO这篇文章的结论非常窄,只在很多假设下才能成立。
结合先前的研究,Transformer只是无法泛化到与预训练数据“明显不同”的内容,而实际上,大模型的泛化能力通常用任务多样性和任务复杂性来衡量。
但是,就算真的缺乏泛化能力,又能怎么样呢?
英伟达AI科学家Jim Fan就说,这种现象其实没啥奇怪的,因为Transformer本来就不是万金油,大模型表现得好,是因为训练数据刚好是我们关心的内容。
借用这个表情包的说法,既然泛化能力欠缺,那就把它训练到没有训练之外的数据为止。
论文地址: